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A wide-angle model for water-wave propagation on an irregular bathymetry is 
developed based on the linear mild-slope equation. The spectral model decomposes 
the incident wavetrain into directional modes, or an angular spectrum. The effect of 
the bottom topography is shown to force the generation of additional directional wave 
modes. Nonlinearity is incorporated in the model by correcting the wave parameters 
iteratively using an empirical nonlinear dispersion relationship which is approxi- 
mately valid over the entire range of water depths. 

Numerical examples are presented for waves incident on a transverse bar field, a 
laboratory experiment involving wave focusing over an elliptic shoal on a sloping 
beach for which detailed measurements are available and for waves focusing behind 
a circular shoal resting on a flat bottom. The application of the model is limited to 
cases in which the model domain is rectangular and the depth variation in the lateral 
direction is small if waves of large incident angle are modelled. 

1. Introduction 
For the past decade, the parabolic-equation method has been one of the various 

methods used to model the propagation of surface waves over water of varying 
depths. The analysis by Liu & Mei (1976) was one of the first parabolic treatments 
of this problem. The development of the mild-slope equation (Berkhoff 1972) and its 
parabolic representation by Radder (1979), and the subsequent development of 
nonlinear versions of this equation by Kirby & Dalrymple (1983) and Liu & Tsay 
(1984) allowed the generation of numerical models which could predict the evolution 
of monochromatic waves in coastal regions reasonably well. There is a significant 
drawback of the parabolic method, however, in that it requires that the waves 
propagate nearly along a given direction (positive x-direction in this paper). 
Deviations of the wave direction, due to refraction and diffraction, away from this 
direction lead to errors, which are usually small for waves propagating in directions 
not greater than 30' from the x-direction. Other methods such as finite-element 
solutions of the mild-slope equation, e.g. Berkhoff (1972), do not have this angular 
restriction, and can solve for the full wave field including the back-scattered wave, 
which is neglected in most of the available parabolic models. However, the parabolic- 
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equation method is computationally more convenient and rapid than other methods, 
and as mentioned can incorporate nonlinearity in a rigorous fashion. 

Efforts towards developing a wide-angle parabolic model have been made, e.g. 
Booij (1981) and Kirby (1986a,b). Very recently Dalrymple & Kirby (1988) have 
developed a wave propagation model valid for angles of propagation up to 90°, based 
on the assumption that the bottom contours were straight and parallel in a direction 
normal to the assumed propagation direction. Their analysis showed that the wave 
field can be decomposed into an angular spectrum, that is, the superposition of many 
synchronous wavetrains propagating at different angles to the x-axis, varying from 
0 to & n / 2  radians. (An angular spectrum model has been used previously on 
constant depth by Stamnes et al. 1983.) Dalrymple & Kirby pointed out that for 
problems such as wave diffraction through a breakwater gap the diffraction pattern 
observed behind the gap is fixed by the initial condition at  the gap. The wave pattern 
behind the gap is simply the radial spreading of the initial angular spectrum, each 
directional mode of which simply refracts and shoals. 

In the present study, we extend the Dalrymple & Kirby's model to the case of 
irregular bathymetry, relaxing the straight and parallel contours assumption, which 
permits us to examine situations where diffraction occurs within the model domain. 
In $2 our wide-angle model for an irregular bathymetry is derived through tht, 1 use 
of Fourier decomposition which produces a convolution term involving interaction 
between the bottom and the wave modes. In $ 3  the approximation of the problem 
in the discrete Fourier space and the numerical method are described. The conditions 
for stability and accuracy of the numerical method are also discussed. Section 4 
illustrates the incorporation of nonlinearity in the model. In $ 5  the mechanism for 
the evolution of directional wave modes due to the interaction between surface wave 
and bottom topography is examined. In $56 and 7 numerical examples are presented 
to show the validity of the model for an irregular bathymetry and a large angle of 
incidence, respectively, and finally in $8 some restrictions on the model are 
discussed. 

2. Governing equation and Fourier decomposition 
In order to study the combined refraction and diffraction of waves, the governing 

equation is taken to be the linear mild-slope equation developed by Berkhoff (1972), 
which has been used in the water-wave propagation models of Radder (1979), Booij 
(1981), and Dingemans et al. (1984): 

(1) 

where V is a gradient operator in horizontal coordinates (z, y), k(x, y) is the local 
wavenumber, C and C,  are the local phase and group velocities, respectively, and 
@(x, y )  is the horizontal spatial variation of the wave potential and is directly related 
to the free-surface elevation of the wave. The total velocity potential for the wave 

v - (CC, V@) + k V C ,  @ = 0, 

The vertical coordinate z is measured vertically upwards from the still water line. 
The wavenumber k must satisfy the dispersion relationship, which relates k to the 
wave angular frequency w and the water depth h(x, y) by 

(3) w2 = gk tanh kh, 
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where g is the gravitational acceleration. This relation will be modified later to  
incorporate nonlinearity in the model. 

Using the definitions of p ( x ,  y)  = CC, and $ = pi@, the mild-slope equation 
becomes (Radder 1979) 

(4) V2#+k:$  = 0, 

where (5 )  

The Helmholtz equation (4) forms the basis of Radder’s parabolic approximation. 
For later convenience, we define a laterally averaged wavenumber, E ,  as 

so that k: = P (  1 - v’), 

where 

and I is the width of the model area in the y-direction. Note that E2 is a function of 
x only and the variability of depth in the y-direction is contained in u2(x, y ) ,  whose 
magnitude is usually much smaller than unity if the topography does not deviate 
drastically from straight and parallel contours. Substituting (7) into (4) gives 

vzqi + Pqi - Fv2$ = 0 .  (9) 

The last term on the left-hand side allows for the effects of the depth variability in 
the y-direction. 

The Fourier transform of (9) in the y-direction leads to the decomposition of the 
potential into modes : 

d,,+(~Z-A2)d-E2F(y2$) = 0, (10) 

where the caret denotes a variable in the Fourier space, A is the continuous Fourier 
parameter, F(  ) denotes the Fourier transform, and the subscript 11: denotes 
differentiation. Note that the Fourier transform of (v”) involves $ in the real space. 
Following Dalrymple & Kirby (1988)) this equation is split, in the Fourier space, into 
two first-order equations by assuming 

&z,A) = $+d- (and $(s,y) = #++$-), (11) 

where the superscripts + and - denote the forward-propagating and back-scattered 
potentials, respectively. Further we assume that we can split (1 1) into the following 
forms : 

& = i(Z2 - A2)k d+ + G(z, A),  

d; = -i(E2-A2)~~--G(x,A), (13) 

(12) 

where G(z, A )  is an unknown function which is included to resolve the s-dependency 
of g2. Substituting these expressions into (10) gives 

(14) 
- i l P  - A Z ] ~  ti+ - i-) + E Z F [ ~ ~ ( # +  + 4-11 

G(z, A )  = 2i(&Z2A2)t 
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By neglecting the assumed small back-scattered wave, the propagation model for the 
forward-propagating wave is obtained : 

where E and A are now understood as the wavenumber in the propagation direction 
and its projection in the y-direction, respectively. Then (Z2 - A2)i  represents the 
projection of the wavenumber in the x-direction. As h exceeds E in magnitude, the 
wavenumber in the x-direction becomes imaginary, indicating evanescent modes 
which decay exponentially in the x-direction. 

The second term on the right-hand side of (15) represents the shoaling/refraction 
of each wave mode. The F(v2$+) term represents the interaction between surface 
wave and the lateral bottom variation, which will be examined in detail later. For 
straight and parallel bottom contours, Dalrymple & Kirby’s (1988) equation 
results. 

3. Numerical method and stability analysis 
Equation (15), with a proper initial condition at x = 0, can be solved by a spectral 

Fourier method which imposes periodic lateral boundary conditions in the y- 
direction. These conditions frequently are not met in many applications, so in such 
cases the lateral extent of the model domain should be taken large enough so that the 
boundaries do not affect the area being studied. In the spectral Fourier method, the 
domain is discretized in the y-direction by N equidistant points, with spacing Ay = 
Z/(N- 1).  The velocity potential #+(x, y), numerically defined only on these points, 
can be transformed into discrete Fourier modes by 

1 N-1 

&(x, n) = - C $+(x,jAy) ePinwAV, n = 0, f 1, +2, . .., f ($N- l),  -$N. (16) 
N i-0 

$ + ( ~ , j ~ y )  = x&(x,n)eifiuAY, j = 0,1,2, ..., ( N -  I ) ,  

The inversion formula is 

(17)  
n 

where 
27t A = -  

NAY’ 

which is different from the continuous Fourier parameter A used in the previous 
section. Subsequently, A is defined by (18). These transforms can be performed 
efficiently by using a fast Fourier transform (FFT). 

In the discrete Fourier space, (15) can be approximated by 

where Fn deqotes the nth component of the discrete Fourier transform. The initial 
conditions, $+(O,n), are obtained by using the FFT on the discretized values of 
++(O,jAy),j = 0 to (N-  1). The numerical procedure involves calculating the wave 
field in the spectral domain by marching along the x-direction. However, Fn(v2#+) in 
the last term of the above equation should be calculated in the real domain, so, at  
each step, recourse to the real domain by the inverse FFT is needed. 



Very wide-angle water waves and wave diffraction. Part 2 303 

Equation (19) represents N first-order ordinary differential equations in x, which 
can be solved by a fourth-order Runge-Kutta method. The fi$ite-diffe;ence 
expression of the Runge-Kutta method used in this study to solve q5: = f(x, 4') is 

&., = &+~(k,+2k,+2k3+k,), (20) 

k, = Axf(x,&), k, = Axf(x+iAx,&+ik,), 

k, = Axf(x+$Ax,&+tk,), k, = Axf(x+Ax,&+k3), 

in which the subscripts i and i + !  denote the values at  x = iAx and x = (i+ 1) Ax, 
respectively. In our problem,f(x, $+) is the right-hand side of (19). When we calculate 
k,, k, and k4, the F,(v2$+) term is needed from the real domain. For example, using 
the half-step central difference for [E2- (nA),]i, k, is calculated by 

k, = iAx[,E2(z++Ax)-(nA)2]i (&++k,) 

[ P ( x + A x ) - ( ~ A ) ~ ] ~ - [ P ( x ) -  ( n h ) z ] i ( k + y  ~ 

2 1  
- 

2[P(x + i A s )  - (nh)2]i 

iAxP(x + +Ax) 
2[P(x: + :Ax) - (nh)2]i 

- F,[ vz(x + +Ax, y) F-l( & + ik,)]. 

As can be seen in (20), in the Runge-Kutta method used in this study, depth 
information at every +Ax is needed to calculate the wave field at  every Ax. Thus we 
need the computation of four FFT's and four inverse-FFT's at  each step. 

In the discrete propagation model (19), the wave modes for which (nh), 2 Ez are 
evanescent. Since in general ,%has the minimum value at  the offshore boundary, some 
evanescent modes become progressive modes as they propagate into shallower 
region. In this study these evanescent modes are neglected and only the progressive 
modes a t  the offshore boundary are carried into the domain. For straight and parallel 
contours, this can be justified on the basis that the newly arising progressive modes 
represent the trapped wave modes that cannot be excited from offshore. 

For the purpose of the stability analysis of the numerical method described above, 
first we consider the following simplified equation : 

i,+ = i@+,  (21) 

where 6 = [ P -  (nA)7;,  which is real or imaginary depending on the relative 
magnitudes of E2 and (nh),. Here we consider only the progressive modes for which 

is real. The above equation is approximated in the Runge-Kutta method by 

+(x+Ax) = [l -ti&Ax-i(%Ax)z-~' 6 1 ( 6 A ~ ) 3   AX)^] &@), (22) 
where we assumed L to be constant for simplicity of analysis. We use one-dimensional 
(in 5) von Neumann stability analysis to determine the condition that has to be 
imposed on the step size Ax. We look for a solution to (22) of the form 

&(.) = p * x ,  

where 6 is the amplification factor and we need 161 < 1 for stability. Substitution in 
(22) gives 

(23) 

The above equation in plotted in figure 1 for varying &Ax. The solution becomes 
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I 0.5 1 .o 1.5 2.0 2.5 
0 

LAX 
0 

FIGURE 1. Amplification factor 151 &s a function ?f LA< in the fourth-order Rung-Kutta 
method t o  solve q5: = i k p .  

unstable if LAX > 2.828 and shows severe damping in the range 1.5 <  AX < 2.8. 
Therefore, for the solution to be accurate as well as stable (0.99 < 161 < l . O ) ,  we 
need 

lnAl varies from 0 to n/Ay. Thus from (24) we obtain 

A~[iC~-(nh)~]: < 1.09. (24) 

1.09 
A X < - .  

k, 
(25) 

Note that there is no restriction on choosing Ay unless the evanescent modes are 
included in the computation. 

In the above stability analysis, the second and the third terms on the right-hand 
side of (19) were neglected, which should be important for the numerical stability in 
cases of steep bottom slopes or large lateral depth variation, respectively. Consider 
now a problem with just the refraction/shoaling term alone : 

A "  

$: = -k#+, (26) 

where 
A [ P -  (nA)2]k k =  - 

2[k2 - (nh)2]i (27) 

which is always positive for the progressive modes propagatiqg on the beach with 
decreasing depth in the positive x-direction. Again assuming k to be constant over 
the distance of several Ax and following a procedure similar to the above, we get 

IEl = I1 -~AX++(LAX)~-&(~AX)~+&(LAX)~~. (28) 

For positive LAX, 161 starting from 1 at  AX = 0 decreases to about 0.27 at $Ax = 1.6 
and increases monotonically after that. Again to satisfy the condition for stable and 
accurate solution, 0.99 6 161 < 1.0, we need 

0.02[&2- (nA)Z]i 
[ P -  (nA)2] i  . 

Ax < 

This condition states that we need smaller Ax for a steeper beach slope. 

(29) 
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For the wave-bottom interaction term (the last term in (19)), for simplicity of 
analysis we assume v2 to be constant and consider the following problem: 

i+ = - i@+, (30) 

where 

Again assuming & to be constant over a short distance in the x-direction and 
following the above procedure, we get 

This condition states that we need smaller Ax as the bottom topography deviates 
largely from straight and parallel contours. 

In the actual computation, Ax is determined so as to satisfy (25), and the conditions 
(29) and (32) are monitored during the computation. 

4. Incorporation of nonlinearity 
To date several approaches have been used to incorporate nonlinearity in the 

water wave propagation models. One approach is to modify a linear model by the 
inclusion of a cubic (in amplitude) nonlinear term which represents the distortion of 
the phase speed resulting from third-order effects in the Stokes theory (see Yue & Mei 
1980; Kirby & Dalrymple 1983; Liu & Tsay 1984). This approach has the advantage 
of having an analytic foundation, but it has a distinct disadvantage in that it 
becomes invalid in the limit of shallow water. The second approach is to use a basic 
linear model with an empirical dispersion relation which models amplitude dispersion 
in shallow water and becomes asymptotic to the linear dispersion relation in deep 
water (see Booji 1981). Thus this approach leads to the prediction of erroneous wave 
parameters in the deep-water limit. 

Considering these drawbacks of the above approaches, Kirby & Dalrymple (1986) 
have proposed an empirical dispersion relation which smoothly matches the Hedges' 
(1976) approximate shallow-water dispersion relation to the analytic results for 
Stokes waves in intermediate and deep water : 

w2 = gk[l +f,(kh) e2D] tanh [kh+f,(kh) € 1 ,  (33) 

where E = ku; a is the wave amplitude from the linear theory, and 

f , (kh)  = tanh5kh, 
f,(kh) = [kh/sinh MI4, 

cosh 4kh + 8 - 2 tanh2 kh 
8 sinh4 lch 

D =  

This nonlinear dispersion relation may be used in modelling efforts in two ways 
as discussed by Kirby & Dalrymple (1986). First, the dispersion relation may be 
incorporated directly in the mild-slope equation. In the present study, we use the 
second method, which consists of using (33) to correct iteratively the wave 
parameters in the linear model. First, we perform the computation with the 
wave parameters given by the linear dispersion relation (3). Then the local wave 
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parameters are corrected by the nonlinear dispersion relation (33) using the local wave 
amplitudes calculated previously. The model computation is then performed again, 
with the corrected wave parameters. This procedure is repeated until the corrected 
wave parameters yield little difference from the previous ones. I n  the numerical 
examples described in the following sections, the iteration was continued until the 
corrected wavenumber lay within+ 1 YO of the previous value at every grid point. 

When we use the fourth-order Runge-Kutta method to solve (19), wave 
amplitudes are computed at main grid points spaced by Ax from x = 0, with the 
corrected wave parameters a t  those points. However, the wave parameters at the 
auxiliary grid points spaced by Ax from x = -;Ax also should be corrected, but 
the wave amplitudes are not computed a t  these points. Thus, the wave amplitudes 
a t  the auxiliary grid points are interpolated by a cubic spline in the x-direction 
using those a t  the main grid points. 

5. Interaction between surface wave and bottom topography 
The term F,(u2++) in (19) represents the interaction between the directional wave 

modes and the lateral bottom variation, which can force the evolution of the various 
directional modes, even if they are initially of zero magnitude. I n  order to examine 
this mechanism, we express F,(v2q5+), in terms of periodic convolution, as 

where P(x, mh), m = 0 to (N- l),  is the discrete Fourier series obtained by the Fourier 
transform of v2(x, y) in the y-direction. This equation indicates that  the mth bottom 
mode P(x,  mh) coupled with the (n-m)th surface wave mode produces or changes the 
nth wave mode. 

In order to illustrate this more explicitly, we have applied the model to a 
monochromatic wavetrain travelling over a bed whose depth is constant in the x- 
direction but varies sinusoidally in the y-direction, creating transverse bottom ridges 
and troughs on the bed. These ridges and troughs begin at x = 0. I n  this particular 
example, the refraction/shoaling term on the right-hand side in (19) vanishes. The 
mean water depth is 10 m and the wavelength and amplitude of the bed are 640 m 
and 2 m, respectively, as shown in figure 2. At x = 0, a plane wave of 8 s period and 
1 m amplitude enters the domain a t  an incident angle of 12.8". We have taken Ax = 
5 m and Ay = 10 m to make a grid of 500 x 128 rows over the 2500 x 1280 m model 
area, so that the wave mode a t  x = 0, ++(O,  nh), is non-zero for n = 4 and zero for all 
other modes, while the bottom modes P(x,  mh) are appreciable for m = 2,4,6,  N-6, 
N-4,N-2 and are negligibly small for all otker modes as shown in figure 3. At the 
first step, these bottom modes interact with q5+(0, 4h) and generate the wave modes 
of n = 6,8,10, - 2,0,2,  respectively, which were initially of zero magnitude. Note 
that in an FFT, the following changes are made: P(x, (N-m)h) = C2(x,-mh). The 
mechanism for the subsequent generation of new directional modes is very 
complicated. Note that only the even-number modes are generated in this particular 
example. 

Figure 4(u-d) shows the amplitude spectra of the progressive modes a t  different 
sFctions. The wave field a t  x = 0 (figure 4a) is described by single wave mode, 
q5+(0,4h), which is propagating a t  12.8" to the x-axis. The growth of new modes near 
the initial condition is shown in figure 4(b,c) ,  and the broad spectrum at x = 
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a,= l m  
h = 1 0 m  

I A , = 2 m  

FIGURE 2. Bottom geometry and the initial condition of the wave field for the example of wave 
propagation over a bathymetry consisting of periodic ridges and troughs. T = 8 s, 8, = 12.8', at 
x = 0. 

I 1 

0 20 40 60 80 100 120 140 
m 

FIGURE 3. Amplitude spectrum of the bottom modes G*(x, P A )  for the periodic bathymetry shown 
in figure 2. Kote that G2(x, mA) is different from the depth h ( z ,  mA) which gives non-zero values for 
m = 2 and N - 2  and zero for all other values of m. 

2500 m is shown in figure 4 ( d ) .  Again observe that the odd-number modes are never 
generated in the linear model. 

Another interesting result in this example is the wave trapping over the ridge as 
shown in figure 5, which is the contour map of the instantaneous free-surface 
elevation at  intervals of 0.5 m. The waves passing over the central ridge are focused 
near 2 = 700 m, y = 720 m and turn back to the left. Mei (1983) has discussed this 
problem based on ray theory. Some of the rays determined by the Mei's method are 
drawn in figure 5.  The rays 1, 2 and 8, counting from the left, travel over the wavy 
bed without being trapped. The rays 3 to 7, however, are trapped, For these rays 
computation was stopped at  the turning points, where the ray model blows up, but 
the extrapolation of these rays can explain the wave trapping phenomenon over the 
ridge in this example. 

6. Verification of the model for irregular bathymetry 
For the purpose of testing the model for the prediction of wave deformation on an 

irregular bathymetry, we have chosen the experiment reported by Berkhoff, Booij & 
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FIGURE 5 .  Instantaneous wave field over periodic ridges and troughs shown in figure 2.  The lines 
denote wave rays, emanating from x = 0 at 12.8" angle of incidence at intervals of 80 m. 

Radder (1982). The experimental conditions satisfy most of the assumptions made in 
the present model, which are mildly varying bathymetry and negligible currents and 
wave reflection. The periodic lateral boundary condition is not met, but, as will be 
seen below, the model predicts the wave field reasonably well over the entire vicinity 
of a refractive focus where diffractive and nonlinear effects both become significant, 
thus indicating that in this region the effect of the lateral boundaries is not significant 
with the chosen computational domain. 

The experimental bathymetry consists of an elliptic shoal situating on a plane 
sloping beach with a slope 1 : 50. The slope rises from a region of constant depth h = 
0.45 m, and the entire slope is rotated clockwise at  an angle of 20" from a straight 
wave paddle. Bottom contours (solid lines) in the chosen computational domain are 
shown in figure 6 along with the labelled transects 1-8 (dashed lines) for which data 
from the laboratory experiment of Berkhoff et al. are available. The offshore 
boundary of the computational domain is chosen so that water depth is constant 
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along x = 0. The initial condition for the wave then corresponds to the uniform 
wavetrain generated by the wave paddle, i.e., 

@(x = 0,y) = @,, 

where @,, = 0.0232 m, which also corresponds to the amplitude of the incident wave. 
The wave period T = 1 s. 

In  order to describe the geometry of the shoal, we introduce slope-oriented 
coordinates (x’, y’) as in figure 6, which are related to the computational coordinates 

z’ = (x- 10.5) cos 20°+ (y- 10) sin 20°, 

y’= (2-10.5) sin2O0-(y-1O) cos20O. 

The origin (x’,y’) = (0,O) corresponds to the centre of the shoal. Then the water 
depths in the absence of the shoal are described by 

h, = 0.45 m, 
ho-0.02(5.84+x’) m, 

x’ < -5.84 m, 
x’ 2 -5.84 m. h =  { 

The boundary of the shoal is given by 

($X’)* + (Q’y = 1 

and the depth in the shoal region is modified according to 

h = h + 0.3 -0.5[ 1 - - ($J’)’]]”, 

resulting in a depth a t  the centre of the shoal of 0.1332 m. 
In the computational domain we have chosen, Emax = 5.827 m-l, which occurs at 

x = 20 m. To satisfy the condition (25) for stable and accurate solutions, we have 
taken Ax = 0.1 m and Ay = 0.3125 m to make a grid of 201 x 64 rows. Computations 
were made using both the linear model and the nonlinear version which ut,ilizes the 
nonlinear dispersion relation (33) to iteratively correct wave parameters. Comparison 
with the measurements along the transects 1-8 are shown in figure 7(a-h) in terms 
of normalized wave amplitude with respect to the incident wave amplitude. In  each 
figure, nonlinear and linear model results are indicated by solid and dashed lines, 
respectively, while open circles indicate measured data points. The results of a 
nonlinear parabolic model (i.e. Kirby & Dalrymple 1983) are also shown as dotted 
lines. Note that for the transects 1-5 the lateral direction in this paper is flipped 
compared with the figures presented in Berkhoff et al. (1982). Since the transects 6 
and 8 do not correspond t o  any of our grid lines, the wave amplitudes along these 
transects were interpolated using a cubic spline in the y-direction. Taken as a whole, 
the inclusion of the nonlinear dispersion relation improves the model results greatly, 
especially in the vicinity of a refractive focus where the amplitude dispersion plays 
an important role. 

As shown in figure 7,  the results of our nonlinear model are comparable with those 
of the nonlinear parabolic model. I n  order to  give a more quantitative comparison 
between the numerical models and the measurements, we have employed the 
statistical procedure proposed by Willmott ( 1981). He criticizes the traditional 
statistical measures such as the correlation coefficient, its square and their statistical 
significance for evaluating the errors of model predictions (P) against observa- 
tions (0). 
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As alternative measures of error, he proposes the root-mean-squared error 

It (35) 

and its systematic and unsystematic parts in order to give pertinent information 
about the nature of the error 

where pi = a+ bO,, and a and b are the intercept and the slope obtained from an 
ordinary least-square analysis between 0 and P. They satisfy the following 
relation : 

RMSE2 = RMSE,Z + RMSEE. (37) 

Willmott suggests that if RMSE is largely composed of RMSE,, further refinement 
of the model is needed in the direction to minimize RMSE, in order that  the model 
predicts a t  its maximum possible accuracy, but on the other hand, if RMSE, is the 
major portion of RMSE, perhaps the model is as good as it is without major 
reworking. 

As a measure of the degree to which a model's predictions are error free but not 
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Section 
no. N 

1 28 

2 28 

3 28 

4 27 

5 28 

6 20 

7 20 

8 20 

Total 199 

RMSE 
(cm) 

0.168 
(0.138) 

0.283 

0.256 
(0.271) 

0.229 
(0.205) 
0.301 
(0.237) 

0.191 
(0.148) 

0.302 
(0.197) 

0.292 
(0.1 39) 

0.256 

(0.189) 

(0.199) 

RMSE, 
(cm) 

(0.103) 
0.142 

0.283 
(0.1 80) 

0.250 
(0.240) 

0.186 
(0.193) 

0.236 
(0.234) 

0.175 
(0.137) 

0.253 
(0.166) 

0.255 
(0.135) 
0.248 
(0.195) 

RMSE, 
(em) 

0.090 
(0.092) 

0.019 
(0.055) 

0.055 
(0.126) 

0.133 
(0.068) 
0.186 
(0.041) 

0.078 
(0.057) 

0.164 
(0.105) 

0.144 
(0.032) 

0.063 
(0.043) 

d 

0.923 
(0.928) 

0.945 
(0.973) 

0.986 
(0.983) 

0.991 
(0.993) 
0.980 

0.981 
(0.988) 

0.962 
(0.985) 

0.799 

0.983 

(0.990) 

(0.951) 

(0.990) 

TABLE 1. Statistical parameters for evaluating the errors of numerical models against 
measurements for the experiment by Berkhoff et al. (1982) (following Willmott’s 1981 procedure). 
The values in parentheses indicate the results from the nonlinear parabolic model of Kirby & 
Dalrymple (1983). 

a measure of correlation or association between the observed and predicted variates, 
Willmott introduces a dimensionless quantity, d ,  as an index of agreement 

where 0 is the mean of the observed variates. The values for d vary between 0 and 
1.0, where 1 .O indicates perfect agreement between observations and predictions, and 
0 connotes complete disagreement. 

These statistical parameters computed for each transect in figure 6 and for total 
measurement points are summarized in table 1, in which the values in parentheses 
indicate the result from the nonlinear parabolic model. For most of the cases, 
RMSE, is very small compared with RMSE, indicating that these models hardly 
need further refinement. Except for the transect 8, the values of d do not show a big 
difference between the two models and are close to 1.0, indicating that our model is 
as good as the parabolic one. The slightly worse agreement of the present model than 
the parabolic model along the transect 8 could be caused by the intrusion of the 
boundary effects since the wave on the slope refracts towards the right. 
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FIGURE 9. Comparison of the model results of Oo = 60° (black dots) against those of normal 
incidence (-) in terms of normalized wave amplitude with respect to incident amplitude at 
different sections behind the circular shoal illustrated in figure 8. (a) 2’ = 10 m, ( b )  5’ = 15 m. 

7. Test of the model for large angle of incidence 
Through the above example we have verified that our model is a reasonably good 

predictor of the wave field development on an irregular bathymetry where the 
effects of refraction, diffraction and nonlinearity are equally significant. However, 
that example is not sufficient for showing the applicability of the model to a large 
angle of incidence. The next example, chosen for this purpose, is for a monochromatic 
wavetrain focusing behind a circular shoal resting on a flat bottom. Owing to the 
axisymmetry of the circular shoal, the wave focusing pattern behind the shoal should 
be independent of the angle of incidence, if the model predicts it ‘correctly ’. Since the 
purpose of this example is to test how the model works for large angle of incidence, 
only the linear model results are presented. 

The water depth for the first series of tests is given by 

where h, = 0.336 m, a = 0.12, /3 = 0.2, R = 4 m is the radius of the shoal, r = 
( x ‘~  + y‘”; and (x’, y‘) are the coordinates with the origin a t  the crest of the shoal. 
The shoal height a t  the crest is 0.08 m. The same wave period and amplitude as those 
of Berkhoff et al. (1982) are used. We have taken Ax = 0.1 m and Ay = 0.3885 m to 
make a grid of 250x256 rows over 2 5 x 9 9 5  m model area. The shoal crest is 
located at x = 5 m, y = 49.73 m. In  this example, since the bottom variability is 
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confined to the shoal region, Ic is defined as the wavenumber on the flat bottom so 
that v2 = 0 over the flat bottom region. 

Two incident wave angles are tested: 6, = 0" and 6, = 60". The contours of the 
normalized amplitude with respect to the incident wave amplitude are shown in 
figure 8 (a,  b)  for each incident angle. For brevity only one half of the model area in 
the y-direction centred the shoal is presented. The results of the linear parabolic 
model are also shown in figure 8(a)  as dashed lines for 6, = 0" and in figure 8 ( c )  for 
8, = 60". The difference between the present model and the parabolic one is not 
significant for 8, = 0". For 6, = 60", however, the parabolic model gives large 
distortion of the wave focusing pattern. In  particular, the centreline of wave 
focusing rotates by about 25" towards the positive x-direction. For the present 
model, the asymmetric distortion to the focusing pattern at 8, = 60" is apparent near 
the shoal. However, the overall wave focusing pattern behind the shoal a t  6, = 60" 
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FIGURE 11. Amplitude spectra of the progressive modes at different sections from circular shoal 
example in figure lO(c) .  (a) x' = -4  m, ( b )  0 m, (c) 4 m. ( d )  15 m. 

is very similar to that at 8, = 0". For more quantitative comparison between 8, = 0' 
and 8, = 60' for the present model, the variation of the normalized amplitude 
along two transects which are 10 m and 15 m from the shoal crest is plotted in figures 
9(a )  and 9(b) ,  respectively. The values at 8, = 0" is indicated by solid lines, while 
the black dots indicate the values a t  8, = 60" which were obtained by digitization 
from a contour map similar to figure 8 ( b )  but with higher resolution. The values a t  
8, = 60' are slightly shifted to the right compared with those at 8, = 0" but the 
agreement is quite satisfactory, showing that the present model works reasonably 
well for a large angle of incidence. 

The height of the shoal crest in the above test is about a of the water depth on the 
flat bottom. In order to examine the effects of the magnitude of the bottom 
variation, we have tested the model for a shallower shoal. The water depth for this 
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series of tests is given by (39) with a = 0.18, /3 = 0.3 so that the shoal height a t  the 
crest is 0.12 m which is about 5 of the water depth on the flat bottom. Figures 10(a) 
and 1O(b) show the wave amplitude variation a t  8, = 0" and 8, = 60", respectively, 
for the higher shoal. The asymmetric distortion to the focusing pattern a t  the 60" 
angle of incidence becomes severe, and the wave amplitude near the centreline of the 
focusing tends to  be overpredicted. Figure 10 (c) shows the wave amplitude variation 
a t  8, = 45". There is still some apparent asymmetric distortion; however it is much 
less prominent than that a t  0, = 60". The result is that the bigger the bottom 
variation, the bigger the error of the model for the same angle of incidence. 

I n  Dalrymple & Kirby (1988), i t  was shown that, on straight and parallel bottom 
contours, the diffraction pattern behind a breakwater, for example, is determined by 
the summation of angularly spreading waves. The amplitudes and phases of these 
waves are dictated by the initial condition imposed a t  the breakwater, and each wave 
propagates in the x-direction only undergoing refraction and shoaling. The diffraction 
is accounted for solely by the initial condition. In  this study, the diffraction occurs 
within the model domain owing to the presence of the shoal. Figure 11 ( a d )  shows 
the amplitude spectra of the progressive modes a t  different sections for the example 
in figure 10 (5 ) .  The wave field just before the shoal (figure 1 1  a )  is described by one 
wavetrain, $'(x,50A), which is propagating a t  45" to the x-axis. At the section 
crossing the shoal crest (x' = 0 m), the convolution term, which imposes the 
interaction of the bottom variation with the wave field, generates additional 
wavelets, as shown in figure i l ( b ) .  After the shoal on the constant-depth section, 
these wavelets angularly disperse without any change in magnitude (compare figures 
l l c  and l l d ) ,  giving rise to the wave pattern behind the shoal. 

8. Conclusions and discussion 
A wide-angle water-wave propagation model on an irregular bathymetry has been 

developed by using the spectral Fourier method. The wave field a t  the initial row 
(x = 0) is transformed into the discrete Fourier space and the evolution of each 
Fourier mode due to bottom variations is calculated by marching along the x- 
direction; finally, the real wave field is recovered by taking the inverse Fourier 
transform in the y-direction. 

The model depends on the mild-slope assumption for the variation of the 
bathymetry and does not include the effects of currents and wave reflection. The 
most significant restriction of the model, in the application to  a practical problem, 
due to the use of a spectral Fourier method which imposes periodic lateral boundary 
conditions, is that the domain of the model area should be rectangular and should be 
large enough in the lateral direction to avoid the intrusion of boundary effects into 
the area of main interest. An alternative method for eliminating the assumption of 
the periodic lateral boundary conditions could be the Chebyshev collocation method 
outlined in Canuto et al. (1988), which approximates the lateral variation of the wave 
field by the Chebyshev polynomials rather than by Fourier series. 

I n  the previous section, we have found that the model becomes inaccurate with 
greater bottom variation for the same angle of incidence. In order to investigate this, 
we consider a plane wave travelling over water of constant depth, even if this appears 
to  be irrelevant to the bottom variability. Wc may choose E2 as an arbitrary constant 
so that v2 may also be a non-zero constant. Thc problem in the real domain is 

V2$ + P (  1 - v2) $ = 0, 
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with constant E2 and v2. The general solution is given by 

where h and A are arbitrary constants. The Fourier transform of (40) in the y -  
direction leads to 

which can be approximated by 

for small rF2v2/(P --A2). 
On the other hand, our model (15) in water of constant depth reduces to 

which is equivalent to (41). Thus, our model should be restricted to small 
k z v 2 / ( ~ 2 - A 2 ) .  Actually, u2 can be either positive or negative, so the restriction of 
our model to depth variation is described by 

m< 1, 
cos2 e (43) 

where cos28 = (i??--h2)/P was used. In other words, in order for our model to be 
accurate for a large angle of incidence, the depth variation in the y-direction should 
be small. 

An inevitable problem which is encountered in any wide-angle model that uses a 
marching solution technique is the upwave propagation of waves. In the circular 
shoal tests in the previous section, for example, if a very large-incident-angle 
wavetrain is modelled, the constant-depth region before the shoal (x’ < -4 m) 
should be qffected by the presence of the shoal, while this is not detected by the model 
since the $- terms have been neglected. 
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